
REQUIREMENTS SPECIFICATION AND AUTOMATED
EVALUATION OF DYNAMIC PROPERTIES OF A COMPONENT-
BASED DESIGN

C.M. JONKER, J. TREUR, W.C.A. WIJNGAARDS
Vrije Universiteit Amsterdam, The Netherlands

Abstract. Within a design process, the evaluation of a candidate
design solution against a set of requirements may be hard, especiall y
when the requirements concern dynamic properties. For a component-
based design, evaluation of the dynamics can be based on dynamic
properties of the components, and the way in which they are
connected. In this paper an automated approach to the evaluation of
dynamic properties of a component-based design is presented. A
declarative temporal modelli ng language to specify and analyse
dynamic properties is offered. An executable subset of this language is
defined, based on ‘ leads to’ relations. If executable specifications in
terms of leads to relations of dynamic properties of the (reusable)
components within a component-based design are available, then
automated support is offered for: (1) simulation of the overall
dynamics based on the executable dynamic properties of the
components, (2) evaluation of requirements in the form of required
overall dynamic properties of a design against a number of execution
traces of the design, and (3) proving properties of an overall
component-based design from executable properties of its
components. The paper presents methods, techniques and software for
such support and ill ustrates these by an example from the application
area of component-based software design.

1. Introduction

In some application areas of design, systems which have nontrivial dynamics
are designed in a component-based manner. An example of such an
application area is the design of component-based software for dynamic
applications. In such application areas often components can be (re)used for
which the dynamic properties are known. By composing a number of such
components in a component-based design, the required overall dynamics is
obtained. If the dynamics required is not that simple, it is not straightforward
how such dynamics relates to available reusable components and their

2 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

dynamic properties. Therefore automated support for such design processes
is desirable. Literature addressing automated support in the areas of model
checking and verification in general can be found, for example, in
(Henzinger, Nicollin, Sifakis and Yovine 1994; Bouajjani, Lakhnech,
Yovine 1996; Yovine 1997; Fisher 1994; Clarke, Grumberg and Peled 2000;
Manna and Pnueli 1995; Stirling 2001).
 To support component-based design of dynamical systems, combining
required nontrivial dynamics with the use of reusable components, a number
of questions need to be addressed:

• How can dynamic properties of (reusable) components be specified?
• How can requirements on the dynamics of an overall design be

specified?
• How can it be checked whether a given component-based design,

with known dynamic properties of its components, fulfils a given
requirement on its overall dynamics?

• To fulfill overall requirements on dynamics, how can proper
reusable components be determined on the basis of their dynamic
properties, and how can they be composed to obtain a component-
based design fulfilling these overal requirements?

In this paper a rich temporal framework is used to address these questions
(with an emphasis on the first three). The temporal framework provides a
declarative (requirement) specification environment and is used for a variety
of activities, such as temporal simulation, temporal model checking and
temporal reasoning about dynamic properties. The application area used to
illustrate the approach is the design of software, in particular a system of
information agents.
 Specification of dynamic properties of a component-based design has at
least two different aspects of use. First, models for the dynamics can be
specified to be used as a basis for simulation, also called executable models.
These types of models can be used to perform (pseudo-)experiments on the
basis of the design. Second, specification of dynamic properties of a system
can be done in order to analyse its dynamics (i.e., to obtain automated
support for requirements specification, verification and testing). These
properties can play the role of requirements, and can be used, for example, in
evaluation of sample behaviours of (realised or simulated) designs in the
context of these requirements. These two different uses of specification of
dynamic properties of a component-based design impose different desiderata
on the languages in which these specifications are to be expressed.
 A language for executable models should be formal, and as simple as
possible, to avoid computational complexity. Expressivity can be limited.
Software tools to support such a language serve as simulation environment.
A language to analyse dynamic properties, on the other hand, should be
sufficiently advanced to express various dynamic properties that are

 REQUIREMENTS AND PROPERTIES OF A DESIGN 3

relevant. Expressivity should not be too limited; executabili ty, however, is
not required for such a language. What is important, though, is that
properties specified in such a language can be checked for a given sample
behaviour (e.g., a simulation run) without much work, preferably in an
automated manner. Moreover, it is useful if a language to specify dynamic
properties provides possibili ties for further analysis of logical relationships
between properties. For these reasons also a language to specify properties
of the dynamics of a design should be formal, and at least partly supported
by software tools (analysis environment).
 In this paper two different temporal specification languages for dynamic
properties are put forward and ill ustrated for an example application. In
Sections 2 and 3 it is shown how the two languages (one aiming at analysis,
the other one aiming at simulation) to model dynamics within a component-
based design can be defined. An example component-based software design
is used to ill ustrate the notions that are introduced. In Section 4 a model for
the dynamics of this example design is presented. Section 5 addresses the
use of the analysis environment for the example design. In Section 6 the use
of the simulation environment is addressed. In Section 7 a discussion is
included.

2. Specification of Dynamic Properties of a Component-Based Design
To specify dynamic properties of a design, the temporal trace language used
in (Jonker and Treur 1998; Herlea, Jonker, Treur and Wijngaards 1999) is
adopted. This is a language in the family of languages to which also situation
calculus (McCarthy and Hayes 1969; Reiter, 2001), event calculus
(Kowalski and Sergot 1986), and fluent calculus (Hölldobler and Thielscher
1990) belong. In Section 2.1 the Temporal Trace Language TTL is
introduced. This language is more expressive than modal and temporal
languages as described, for example, in (Henzinger, Nicolli n, Sifakis and
Yovine 1994; Bouajjani, Lakhnech and Yovine 1996; Yovine 1997; Fisher
1994; Clarke, Grumberg and Peled 2000; Manna and Pnueli 1995; Stirling
2001); see Section 6 for more discussion about expressivity. In Section 2.2
an example component-based software design (of a multi-agent system of
information agents) is introduced to ill ustrate the language and its use.

2.1. THE TEMPORAL TRACE LANGUAGE TTL

An ontology is a specification (in order-sorted logic) of a vocabulary (also
called a signature). A state for ontology Ont is an assignment of truth-values
{ true, false} to the set of ground atoms At(Ont). The set of all possible states for
ontology Ont is denoted by STATES(Ont). The standard satisfaction relation |=
between states and state properties is used: S |= p means that state property p
holds in state S.

4 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

 To describe behaviour, explicit reference is made to time in a formal
manner. A fixed time frame T is assumed which is linearly ordered.
Depending on the application, it may be dense (e.g., the real numbers), or
discrete (e.g., the set of integers or natural numbers or a finite initial segment
of the natural numbers), or any other form, as long as it has a linear ordering.
A trace

�
 over an ontology Ont and time frame T is a mapping � : T →

STATES(Ont), i.e., a sequence of states � t (t ∈ T) in STATES(Ont). The set of all
traces over ontology Ont is denoted by TRACES(Ont), i.e., TRACES(Ont) =

STATES(Ont)T.
 States of a trace can be related to state properties via the formally defined
satisfaction relation |= between states and formulae. Comparable to the
approach in situation calculus, the sorted predicate logic Temporal Trace
Language TTL is built on atoms referring to traces, time and state properties,
such as

state(� , t, output(C)) |= p.

This expression denotes that state property p is true at the output of
component C in the state of trace � at time point t. Here |= is a predicate
symbol in the language (in infix notation), comparable to the Holds-predicate
in situation calculus. Temporal formulae are built using the usual logical
connectives and quantification (for example, over traces, time and state
properties). The set TFOR(Ont) is the set of all temporal formulae that only
make use of ontology Ont. We allow additional language elements as
abbreviations of formulae of the temporal trace language. Ontologies can be
specific for a component.

2.2 AN EXAMPLE COMPONENT-BASED SOFTWARE DESIGN

For the example, consider a component-based design for a system of two
software agents A and B (represented in the design by two components; see
Figure 1) that participate in a small project: they each have to acquire some
information (in the External World, represented by a third component in the
design) and in cooperation they make up a concluding report on some topic.
Each of the agents has access to useful sources of information, but this
differs for the two agents. By co-operation they can benefit from the
exchange of information that is only accessible to the other agent. If both
types of information are combined, the relevant conclusions can be drawn
that would not have been achievable for each of the agents separately. A
relevant property of such a component-based design is successfulness:

• What makes the difference for such a co-operation to succeed or to
fail?

 REQUIREMENTS AND PROPERTIES OF A DESIGN 5

• Which dynamic properties of the components are relevant for being
successful?

• How does successfulness relate to these dynamic properties?

For example, one of the agents, say A, may not be pro-active in its individual
search for information. This might be compensated if the agent B is pro-
active in requesting the other agent for information, but then at least A has to
be reactive (and not entirely inactive) in information acquisition. Also other
reasons for failure may exist. For example, one of the agents may not be
willing to share its acquired information with the other agent. Yet another
reason for failure may be that although both agents are active in searching
and exchanging information, none of them is combining different types of
information and deduce new conclusions. So, dynamic properties of the
design as a whole depend in a crucial manner on the dynamic properties of
the components, in this case the proper pro-activeness and reactiveness
properties that play a role in the dynamics of the cooperation process of the
agents.

system task control

External
World

Agent B

Agent A

Figure 1. The Example Component-Based Design

6 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

 Summarizing, this example component-based design as depicted in
Figure 1 is composed of three components: two information agents A and B
and a component EW representing the External World. In this figure the
boxes denote system components. During processing of the system, each
component has at each point in time an input state and an output state. The
arrows depict output-input connections: channels taking care that
information available at an output state is also made available (possibly with
some small delay) for the connected input state. Each of the agents is able to
acquire partial information in the External World by initiated information
acquisition, this is modelled by an arrow from the agent to the External
World transferring information on what is to be acquired, and by an arrow
back transferring information on the results of the acquisition.
 Each agent’s own observations are insuff icient to draw conclusions of a
desired type, but the combined information of both agents is suff icient: they
have to co-operate to be able to draw conclusions. Therefore communication
is required; each agent can communicate results of its own information
acquisition and requests for information to the other agent: the arrows
between the agents.

Assumptions on the notion of component-based design
The above description gives an indication of the – very general –
assumptions that are made on the notion of component-based design. This is
a design structure based on components with at each point in time input
states and output states that are connected by arrows to form the design. An
arrow modifies the destination state at each point in time that the source state
has changed, by inserting the changed source state in it.
 For reasons of presentation, this by itself quite common situation for co-
operative information agents is materialised in the following more concrete
form. The world situation consists of an object that has to be classified. One
agent can observe only the bottom view of the object, the other agent the
side view. By exchanging and combining acquired information on the object
they are able to classify the object. For example, if A observes a circle, and
B observes a square, then, if A and B cooperate, together they can conclude
that the object is a cylinder.

Communication from the agent A to B takes place in the following manner:

• the agent A generates at its output state a statement of the form:

 communication_from_to(<type>, <atom>, <sign>, A, B)

• this information is transferred to the input state of B using the arrow
from A to B

 REQUIREMENTS AND PROPERTIES OF A DESIGN 7

In the example <type> can be fill ed with a label request or world_info, <atom>
is an atom expressing information on the world, and <sign>, is one of pos or
neg, to indicate truth or falsity. Instances of communication information that
can be expressed are:

 communication_from_to(request, view(B,circle), pos, A, B)

 communication_from_to(world_info, view(B,circle), neg, B, A)

Here the object atom view(B,circle) expresses the world information that the
view of the object visible for B is a circle. Interaction between an agent A
and the External World takes place as follows:

• the agent A generates at its output state a statement of the form:

 to_be_acquired_by(<atom>, A)

• the information is transferred to the input state of EW

• the External World EW generates at its output state a statement of
the form:

 acquired_information_for(<atom>, <sign>, A)

• the information is transferred to A

Instances of information on information acquisition for an agent A that can
be expressed are:

 to_be_acquired_by(view(A,circle), A)

 acquired_information_for(view(A,circle), pos, A)

The output of an agent can include conclusions about the classification of the
object of the form conclusion(object_type(O)); these are transferred to the output
of the system as a whole.
 In Table 1 an informal sketch of an example trace showing the dynamics
of the component-based design is depicted. Here for simplicity the transfer
of information between components is assumed to take no time (in contrast,
in the simulation presented in Section 6, the transfer does take time). In this
example trace, at time point 1 agent A takes two initiatives (see A’s output
state): (1) to acquire information and (2) to request information from B.
These initiatives are immediately (same time point) received at the input of
the External World component and at the input of B. As a result the External
World provides the information (output at time point 2), and agent B starts

8 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

an information acquisition process (output at time point 2). Immediately (at
time point 2) the acquired information is received by A’s input, and the
information acquisition initiation of B is received at the External World
component’s input. As a result, the External World provides the information
for B (time point 3), and this immediately is transferred to B’s input. As a
result, B communicates this information to A (time point 4). Finally, A,
combining the gathered information, draws the conclusion.

TABLE 1. An example trace of a cooperative information gathering process

Time
point

1 2 3 4 5

Agent A
input

 information
acquired
by A

 information
acquired by B
for A

output acquisition
initiation by A;
request of A to
B

 conclusion
combining
the two types
of
information

Agent B
input

request of A to
B

 information
acquired
by B

output acquisition
initiation by B

 information
acquired by B
for A

External
World
input

acquisition
initiation by A

acquisition
initiation by B

output information
acquired
by A

information
acquired
by B

 The example trace discussed above shows a successful cooperation. In
virtue of which dynamic properties of the components was this success
possible? This question will be addressed in Section 3. In the remainder of
this section, to ill ustrate the use of the temporal trace language, some
dynamic properties for this component-based design as a whole are shown.
Expressed both informally and formally, two of these example properties
state the following:

• Successfulness
For any trace of the system, there exists a point in time such that in
this trace at that point in time the system will provide a conclusion.
Using the Temporal Trace Language TTL, this is formally expressed
by:

 REQUIREMENTS AND PROPERTIES OF A DESIGN 9

∀ � : TRACES ∃ t ∃ O : OBJECT

state(� , t, output(S)) |== conclusion(object_type(O))

• Cooperation necessity
For any trace of the system and any point in time, if in this trace
agent A provides the relevant conclusion, then at an earlier point in
time agent B has communicated to agent A information acquired by
B.
This is formally expressed by:
∀ � : TRACES ∀ O1 : OBJECT ∀ t

 state(� , t, output(A)) |== conclusion(A, object_type(O1)) ⇒
 ∃t’ < t ∃ O2 : OUTLINE
 state(� , t, output(B)) |== communication_from_to(world_info, view(B, O2), pos, B, A)

Other properties considered for this example are correctness and
conservatism; see Section 5 for more details of these properties.

3. An Executable Language to Specify Dynamic Properties for
Simulation

To obtain an executable language, in comparison with the temporal trace
language discussed above strong constraints are imposed on what can be
expressed. These constraints define a temporal language within the paradigm
of executable temporal logic; cf. (Barringer et al. 1996). Roughly spoken, in
this executable language it can only be expressed that if a certain state
property holds for a certain time interval, then this leads to the situation that
after some delay another state property should hold for a certain time
interval. The use of real-valued parameters for time durations and delays is
an extension, compared to the languages described in (Barringer et al. 1996).
This specific temporal relationship •→→ (leads to) is definable within the
temporal trace language TTL. This definition is expressed in two parts, the
forward in time part and the backward in time part. Time intervals are
denoted by [x, y) (from and including x, to but not including y) and [x, y]
(the same, but includes the y value).

Definition (The leads to relationship ••→→→→)
Let α and β be state properties, and let P1 and P2 refer to parts of the design
(e.g., input or output of particular components). Then β follows α, denoted
by P1:α →→e, f, g, h P2:β, with time delay interval [e, f] and duration parameters
g and h if (see also Figure 2):

∀� : TRACES ∀t1:

 [∀t ∈ [t1 - g, t1) : state(� , t, P1) |== α ⇒

 ∃λ ∈ [e, f] ∀t ∈ [t1 + λ, t1 + λ + h) : state(� , t, P2) |== β]

10 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

Conversely, the state property β originates from state property α, denoted by
P1:α •e, f, g, h

 P2:β, with time delay in [e, f] and duration parameters g and h if

∀ � : TRACES ∀ t2:

 [∀t ∈ [t2, t2 + h) : state(� , t, P2) |== β ⇒

 ∃λ ∈ [e, f] ∀t ∈ [t2 - λ - g, t2 - λ) state(� , t, P1) |== α]
If both P1:α →→e,f,g,h

 P2:β, and P1:α •e,f,g,h
 P2:β hold, this is called a leads to

relation and denoted by P1:α •→→e,f,g,h
 P2:β. Sometimes also conjunctions or

negations on one of the sides (or both) of the arrow are used.

α
β

t1

e

g h

t2

time

f
t0

Figure 2. The Time Relationships between the Parameters

Notice that a special case is when the state property α is taken the trivial
property true that is always (at every time point in every trace) true. In this
case a leads to relation specifies that the property β will be initiated or
realized. Examples of leads to relations in the context of the example
component-based design as described in Section 2.2 are the following. Here
the dynamic properties are formulated for a given agent A with respect to the
other agent B; similar properties will hold for agent A’s cooperation partner
B.

Information acquisition reactive

A request to an agent A by another agent B for information that can be
acquired by A leads to acquisition of this information by agent A.
Formally expressed:

∀ O : OUTLINE

input(A):communication_from_to(request, view(A, O), pos, B, A) •→→
5,5,10,10

output(A):to_be_acquired(view(A, O), A)

Request pro-active
Agent A initiates communication to agent B of a request for information that
B is able to acquire.
Formally expressed:

∀ O : OUTLINE

true •→→
5,5,10,10

 output(A) :communication_from_to(request, view(B, O), pos, A, B)

More examples can be found in Section 4.

 REQUIREMENTS AND PROPERTIES OF A DESIGN 11

notion α
notion β

actual delay

duration g

duration h

minimum delay
maximum delay

additional duration

additional duration

Figure 3. Temporal relationships for longer durations

The definition of the relationships as given above can be applied to
situations where the sources hold for longer than the minimum interval
length g. The result for a longer duration of α for P1:α •→→ P2:β is depicted
in Figure 3. The additional duration that the source holds, is also added to
the duration that the result will hold, provided that the condition e + h ≥ f
holds. This is because the definition can be applied at each subinterval of α,
resulting in many overlapping intervals of β. The end result is that the
additional duration also extends the duration that the resulting notion β
holds.

4. An Executable Model for the Example Component-Based Design

To obtain an executable model for the dynamics of a component-based
design, two types of dynamic properties in leads to format are used:
properties for the dynamics of each of the components (Section 4.1), and
properties that define the dynamics of the connections between components
(Section 4.2).

4.1. DYNAMIC PROPERTIES OF THE COMPONENTS

For the example design, the components have dynamic properties as listed
below. This does not mean that every possible component has all these
properties. Rather, each specific candidate for a component is characterised
by a subset of these properties. First the possible properties for the agents are
discussed. They are expressed for agent A (with respect to the other agent B
and the External World).

Information acquisition reactive
A request to an agent A by another agent B for information that can be
acquired by A leads to acquisition of this information by agent A.
Formally expressed as:

∀ O : OUTLINE

input(A) : communication_from_to(request, view(A, O), pos, B, A) •→→5,5,10,10

output(A) : to_be_acquired(view(A, O), A)

12 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

Information acquisition pro-active
Agent A initiates the acquisition of information it is able to acquire
Formally expressed as:

∀ O : OUTLINE

true •→→
5,5,10,10

 output(A) : to_be_acquired(view(A, O), A)

Request pro-active
Agent A initiates communication to agent B of a request for information that
B is able to acquire.
Formally expressed as:

∀ O : OUTLINE

true •→→
5,5,10,10

 output(A) : communication_from_to(request, view(B, O), pos, A, B)

Information provision reactive
A request to an agent A by another agent B for information that can be
acquired by A, together with receiving this acquired information by agent A
leads to communication of this information to agent B.
Formally expressed as:

∀ O : OUTLINE

input(A):communication_from_to(request, view(A, O), pos, B, A) ∧

input(A) : acquired_information_for(view(A, O), pos, A) •→→
5,5,10,10

output(A) : communication_from_to(world_info, view(A, O), pos, A, B)

Information provision proactive
Receiving acquired information by agent A leads to communication of this
information to agent B.
Formally expressed:

∀ O : OUTLINE
input(A) : acquired_information_for(view(A, O), pos, A) •→→

5,5,10,10

output(A) : communication_from_to(world_info, view(A, O), pos, A, B)

Conclusion proactive
Receiving acquired information by agent A and receiving by communication
information acquired by agent B leads to combining this information in
drawing a conclusion. Which specific conclusion is to be drawn depends on
the input information. Therefore, this property consists of a set of specific
properties (instances), for example in formal form:

 input(A) : acquired_information_for(view(A, square), pos, A) ∧

 input(A) : communication_from_to(world_info, view(B, square), pos, B, A) •→→
5,5,10,10

 output(A) : conclusion(object_type(cube))

The last property is a property of the External World component.

 REQUIREMENTS AND PROPERTIES OF A DESIGN 13

Information acquisition effectiveness
This is a property of the External World component that guarantees that
every information acquisition initiative results in the acquired information
Formally expressed:

∀ X : AGENT ∀ O : OUTLINE ∀ S : SIGN
input(EW) : to_be_acquired(view(X, O), X) ∧

output(EW) : true_in_world(view(X, O), S) •→→
5,5,10,10

output(EW) : acquired_information_for(view(X, O), S, X)

4.2. DYNAMIC PROPERTIES FOR CONNECTIONS BETWEEN
COMPONENTS

In addition to dynamic properties of components, connection properties are
used to express the dynamics of the connections between the components in
the design. These have a common pattern, instantiated for the particular
components and the state properties involved at the connected output and
input states. A possibility is to take zero time delay for connections.
However, to be more general, nonzero delays in connections are allowed as
well.

Connection of one agent to the other
∀ A : AGENT ∀ B : AGENT ∀ C : COMMUNICATION_TYPE ∀ I : INFO
[A ≠ B] ⇒

output(A) : communication_from_to(C, I, S, A, B) •→→
5,5,10,10

input(B) : communication_from_to(C, I, S, A, B)

Connection of an agent to the External World
∀ A : AGENT ∀ I : INFO

output(A) : to_be_acquired_by(I, A) •→→
5,5,10,10

input(EW) : to_be_acquired_by(I, A)

Connection of the External World to an agent
∀ A : AGENT ∀ I : INFO ∀ S : SIGN

output(EW) : acquired_information_for(I, S, A) •→→
5,5,10,10

input(A) : acquired_information_for(I, S, A)

Connection of an agent to the system output state
∀ A : AGENT ∀ O : OBJECT

output(A) : conclusion(object_type(O)) •→→
5,5,10,10

output(S) : conclusion(object_type(O))

5. Analysis Environment
Apart from an editor to specify dynamic properties, the analysis environment
includes two parts; all these tools assume a finite time frame:
1. a tool that, given a set of traces (e.g., generated by simulation based on

the component properties or testing of a prototype realisation), checks

14 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

any dynamic property of a component-based design expressed in the
Temporal Trace Language TTL. In additiona tool has been developed
that, given a trace checks for any property expressed in terms of •→→
where exactly in the trace this property fails.

2. a tool that, given an executable specification, for any dynamic property
in leads to format proves or disproves whether it is entailed by the
dynamic properties in leads to format of the components.

5.1. CHECKING A DYNAMIC PROPERTY AGAINST A SET OF TRACES

This application assumes that at a certain point in time within a design
process both a set of requirements for dynamic properties of a design as a
whole, and a generated candidate for the design are available. To check
whether a required dynamic property for the design (expressed by a temporal
formula in TTL with a universally quantified variable � for a trace) is fulfilled
in a given trace or set of traces, a software environment based on some
Prolog and C programmes (of about 4000 lines) has been developed. Within
this program temporal formulae from TTL are represented by nested term
structures based on the logical connectives. Specification of properties is
supported by an editor in which properties in terms of TTL can be expressed
more or less as written below.

GR1 Successfulness
For any trace of the system, there exists a point in time such that in this trace
at that point in time the system will provide the relevant conclusion.
Using the Temporal Trace Language TTL, this is formally expressed by:
∀ � : TRACES ∃ O : OBJECT ∃ t

state(� , t, output(S)) |== conclusion(object_type(O))

This can also be expressed in simple format as follows:
∃ O : OBJECT true →→

0,1000,10,10
 output(S) : conclusion(object_type(O))

GR2 Correctness
For any trace of the system and any point in time, if in this trace the system
provides information at t, then this information is correct.
Formally expressed in TTL format by:
∀ � : TRACES ∀ O : OBJECT ∀ t

 state(� , t, output(S)) |== conclusion(object_type(O)) ⇒

 state(� , t, output(EW)) |== true_in_world(object_type(O), pos)

This can also be expressed in simple format as follows:

∀ O : OBJECT

output(W) : true_in_world(object_type(0), pos) •
0,1000,10,10

output(S) : conclusion(object_type(O))

 REQUIREMENTS AND PROPERTIES OF A DESIGN 15

GR3 Conservatism
For any trace of the system and any point in time, if in this trace the system
provides a conclusion at t, then for all points in time t’ later than t in this
trace at t’ the system provides the same conclusion.
Formally expressed in TTL format by:
∀ � : TRACES ∀ O : OBJECT ∀ t

 state(� , t, output(S)) |== conclusion(object_type(O)) ⇒

 ∀t’ > t state(� , t’, output(S)) |== conclusion(object_type(O))

This can also be expressed in simple format as follows:

∀ O : OBJECT

 output(S) : conclusion(object_type(O)) →→
1,1,1,1

 output(S) : conclusion(object_type(O))

GR4 Cooperation necessity
For any trace of the system and any point in time, if in this trace agent A
provides a conclusion, then at an earlier point in time agent B has
communicated to agent A information acquired by B.
Formally expressed in TTL format by:
∀ � : TRACES ∀ O1 : OBJECT ∀ t

 state(� , t, output(A)) |== conclusion(object_type(O1)) ⇒

 ∃t’ < t ∃ O2 : OUTLINE
 state(� , t’, output(B)) |== communication_from_to(world_info, view(B, O2), pos, B, A)

This can also be expressed in simple format as follows:

∀O1:OBJECT ∀O2:OUTLINE ∀A:AGENT ∀B:AGENT
[A ≠ B] ⇒

output(B) : communication_from_to(world_info, view(B, O2), pos, B, A) •
0,1000,10,10

output(A) : conclusion(object_type(O1))

As an example, the specified successfulness property is represented as a
nested term structure internally within the software environment:

forall(M, ex(T2, INF,

 holds(state(M, T2, output(S)), communication_from_to(INF, S:SYSTEM, U:USER), true)))

Traces are represented by sets of Prolog facts of the form

holds(state(m1, t(2), input(component)), a)), true).

where m1 is the trace name, t(2) time point 2, and a is a state formula in the
ontology of the component' s input. It is indicated that state formula a is true
in the component’s input state within the design at time point T2. The Prolog
programme for temporal formula checking uses Prolog rules such as

16 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

sat(and(F,G)) :- sat(F), sat(G).
sat(not(and(F,G))) :- sat(or(not(F), not(G))).
sat(or(F,G)) :- sat(F).
sat(or(F,G)) :- sat(G).
sat(not(or(F,G))) :- sat(and(not(F), not(G))).

that reduce the satisfaction of the temporal formula finally to the satisfaction
of atomic state formulae at certain time points, which can be read from the
trace representation.
 Another part of the program takes a trace of a component-based design as
input, and specifications of dynamic properties (assumed in executable
format) and generates an interpretation of what happens in this trace: it
provides a check where exactly these dynamic properties actually hold in
that trace.
 The program marks any deficiencies in the trace compared with what
should be there due to the temporal relationships. If a relationship does not
hold completely, this is marked by the program. The program produces
yellow marks for unexpected events. At these moments, the event is not
produced by any temporal relationship; the event cannot be explained. The
red marks indicate that an event has not happened, that should have
happened. In addition to checking whether the rules hold, the checker
produces an informal reading of the trace. The reading is automatically
generated, using a simple substitution, from the information in the given
trace.

Figure 4. A nonsuccessful trace

This environment can be used to compare any trace (for example obtained
by prototyping or simulation) to the possible dynamics of a component-
based design. For example, it can be found that a certain part within the
realisation does not fulfill the relevant component’s specified dynamic
properties. As an example, in Figure 4 a trace is considered where agent B is
expected to have a certain combination of properties, under which the

 REQUIREMENTS AND PROPERTIES OF A DESIGN 17

information acquisition reactiveness property but actually does not have this
property (nor the information acquisition pro-activeness property). No
conclusion is reached by the system. What is the cause of this failure? By
checking all expected properties of B (and of the other components) it turns
out that indeed the information acquisition reactiveness property fails,
whereas the other expected properties do not fail. This pinpoints the cause of
the failure. The result of the check is (taken from the larger picture in the
interface) as depicted in Figure 5. It shows in red which and when outputs
were expected from agent B that actually lack in the trace.

Figure 5. Pinpointing the cause of nonsuccessfulness

For all traces, the successfulness property GR1, the correctness property
GR2, the conservatism property GR3, and the cooperatioon necessity
property GR4 as specified in simple form above can be checked
automatically, and actually have been checked for a number of traces.
 As mentioned, to use this software environment, both a specification of a
relevant property for the overall design and a set of traces of the considered
design are needed. The relevant dynamic property is assumed to result from
a requirements analysis during the design process. The set of traces against
which the requirement is checked, can be provided in two manners. The first
manner to obtain this set of traces is by simulation of the candidate
component-based design. Here it is assumed that the (reusable) components
used in the component-based design all have associated dynamic properties
that hold for them. Moreover, it is assumed that these dynamic properties of
the components can be expressed in executable format, based on the relation
•→→. If these assumptions are fulfilled, simulation can be performed based
on the simulation software environment described in Section 6. The second
manner to obtain a set of traces is by prototyping. This assumes that
realisations of the components used are available, and that they can easily be
configured to obtain a prototype realisation of the whole design. This
prototype realisation is used to do some test sessions, resulting in a set of
traces that can be checked automatically as described above.

5.2. PROVING A •→→ PROPERTY FROM AN EXECUTABLE
SPECIFICATION

Another software tool (about 300 lines of code in Prolog) addresses the
proving of dynamic properties (expressed in terms of →→ , •or •→→) of a
component-based design as a whole from an (executable) specification of the

18 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

dynamic properties of the components without involving specific traces.
This dedicated prover exploits the executable nature of the specification and
the ‘past/current implies future’ (cf. (Barringer et al. 1996)) nature of the
property to keep complexity limited.

Using this prover, dynamic properties of the component-based design can
be checked that hold for all traces, without generating them all (or a sample
set of them) by subsequent simulation or prototyping as is needed in the
approach described in Section 5.1. The eff iciency of finding such a proof
strongly depends on the complexity of the specifications of the dynamic
properties for the different components. For example, given the executable
specification of the software agents, the successfulness property GR1, the
correctness property GR2, the conservatism property GR3, and the
cooperatioon necessity property GR4 defined above can be (and actually
have been) proven from suitable sets of properties of the components.

Also properties can be disproven. For example, for specifications of sets
of dynamic properties of the agent components that do not guarantee
information exchange between the agents, the property that ‘succesfulness of
information acquisition of the two agents implies successfulness’ can be
(and actually has been) proven not to hold. The prover comes up with a trace
that is a counter example against this property: Similarly, for agents that are
not conclusion pro-active, the property that ‘ if each of the agents provides
the other agent with the information it acquired implies successfulness’ has
been disproven.

The eff iciency of the prover is reasonable. The price that is paid to keep
complexity limited is that only properties of the overall design can be proven
that can be written in one of the formats →→ , •or •→→.

6. Simulation Environment

Based on the declarative executable temporal language, a simulation
environment has been created to enable the simulation of a component-based
design based on specification (in executable format) of dynamic properties
of its component, to be used for testing and evaluation purposes; similar to,
e.g., (Al-Asaad and Hayes 1995). In this section, first an example of an
executable model is discussed. Then the simulation software is introduced.
Finally, some of the results of the experiments with the example executable
model are discussed. Input for the simulation environment is a set of
executable temporal formulae expressed in terms of the leads to relation •→→
(i.e., in the format defined in Section 3). A software environment has been
developed which implements the temporal formalisation of the dynamics as
specified by an executable model. First the approach is introduced, then the
program will be briefly reviewed, after which some of the results are
discussed.

 REQUIREMENTS AND PROPERTIES OF A DESIGN 19

6.1. THE SIMULATION SOFTWARE

The simulation determines the consequences of the temporal relationships
forwards in time. Remember that α leads to β, is denoted by P1:α •→→e, f, g, h
P2:β, where the time delay λ is taken from the interval [e, f]. The duration
parameter g denotes the time span that α must minimally hold, and h denotes
the duration parameter that β must minimally hold. In order to make
simulation efficient, long intervals of results are derived when starting from
long intervals. By applying additional conditions (i.e., e+h ≥ f), the derivation
of longer intervals becomes possible, see Section 3, Figure 3. The logical
relationships thus avoid unnecessary work for the simulation software.

The delay value λ can either be chosen randomly within the interval [e, f]
each time a relationship is used in simulation, or the λ can be a fixed value in
this interval. Selecting either a random or fixed λ enables thorough
investigation of the consequences of a particular model.
 Following the paradigm of executable temporal logic, cf. (Barringer et al.
1996), but extended to real-time intervals, a 8000 line simulation program
was written in C++ to automatically generate the consequences of the leads
to relationships within the executable specification of dynamic properties of
the components within a component-based design. The program is a special
purpose tool to derive the results forwards in time, as in executable temporal
logic. After a short look at the method of forward derivation, the
specification of the derivation rules is presented.

In order to derive the consequences of the temporal relationships within a
specific interval of time, a cycle is performed, starting at time 0. For the set
of rules the earliest starting time of the antecedent for each rule, for which
the consequent does not already hold, is computed. A rule with earliest start
time of the antecedent is chosen. This rule is then fired at that time, adding
the consequent to the trace. The cycle is restarted, only looking for
antecedents at or after the fire time point, as effects are assumed to occur
simultaneously or after their causes. This continues until no more rules can
be fired, or the fire time is at or after the end time of the simulation interval.

The program reads a specification of temporal rules from a plain text file.
The maximum time for derivation is also specified in that file, the interval [0,
MaxTime). In order to specify facts about the environment, (periodic)
intervals can be given. The functions not(), and(,), and or(,) can be used to
make more complex properties from atoms. The properties have and, or and
not given in prefix ordering for the program (instead of infix), i.e., a function
is given before its arguments, e.g., and(a, b) instead of (a and b). The +(and +)
brackets perform concatenation of their contents, in order to construct
identifiers from variables and strings. The •→→ relation is specified using
LeadsTo, followed by the e, f, g and h values. Note that the program does not
use the • (originates from) part of the relation as only forward derivation is

20 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

performed. First the timing is given, then the variables are quantified. A
restriction is often put on the variables. Then the antecedent and consequent
are given. For clarity, tokens are displayed boldface, values and identifiers
are not. For example, the information acquisition reactiveness property is
expressed as follows; here the keywords of the language are in bold:

RuleVarLeadsTo delay 5 5 10 10
 Var ForAll A : AGENT
 ForAll B : AGENT NotEqual B : A
 ForAll O : OUTLINE
 EndVar
 +(A _input_ communication_from_to(request , view(A , O) , pos , B , A) +) o->>
 +(A _output_ to_be_acquired(view(A , O) , A) +)

Figure 6. A is fully reactive and proactive;
B is reactive, but proactive in making conclusions.

6.2. SOME SIMULATION RESULTS

Figure 6 shows some of the results of simulation (picture generated by the
tools) with the example component-based design. Time is on the horizontal
axis. The properties are listed on the vertical axis. The λ is fixed at 0.5. A
dark box on top of the line indicates the property is true during that time

 REQUIREMENTS AND PROPERTIES OF A DESIGN 21

period, and a single line indicates that the property is false during that time
period. The first line, for example, contains the property that A has as input
that what he has acquired is a shape that is no circle. This property is false
most of the time, but true from approximately time point 60 on.
 Figure 6 shows that the first event is that agent A takes the initiative
(around time point 15) to acquire information by itself, and to request B for
information. This information is received by B and the External World
component around time point 30. The External World provides the
information (it is a square) around time point 45; this acquired information is
received by A around time point 65. In the meantime, around time point 45
B starts to acquire its own information, which reaches the External World
around time point 60. Around time point 75 the External World provides this
acquired information for B (it is a circle), which is received by B around
time point 90. Agent B drwas the conclusion around time point 105, and also
communicates its acquired information to A around this timepoint 105; A
receives it around time point 120, and draws a conclusion around time point
130. Figure 7 shows another simulation trace generated by the tools.

Figure 7. A is fully proactive and reactive, B is reactive only.

22 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

7. Discussion

In this paper the use of specified properties of the dynamics of a component-
based design in the context of evaluation of the design is addressed. A
declarative temporal trace language TTL is offered to specify dynamic
properties, and a declarative executable language is defined as a basis for
simulation and more eff icient analysis. This executable language belongs to
the paradigm of executable temporal languages, cf. (Barringer et al. 1996),
but adds the use of real-time intervals. Models can be specified in a
declarative manner based on a temporal ‘ leads to’ relation which is
parameterized by four real valued parameters for time durations and delays.
Within the simulation environment such models can be executed.

To specify dynamic properties in a more expressive manner, the
language TTL is used: a Temporal Trace Language that belongs to the family
of languages to which also situation calculus (McCarthy and P. Hayes 1969;
Reiter, 2001), event calculus (Kowalski and Sergot 1986), and fluent
calculus (Hölldobler and Thielscher 1990) belong. The executable language
for simulations is definable within this much more expressive language.
Supporting tools have been implemented that consist of:

• A software environment for simulation of a component-based design
on the basis of a specification of dynamic properties of the
components and their connections in executable ‘ leads to’ f ormat

• A software environment for evaluation of dynamic properties
against traces for a component-based design, both for properties in
TTL format and in ‘ leads to’ f ormat

• A software environment to automatically prove (or disprove) ‘leads
to’ properties of the overall design from ‘ leads to’ properties of its
components and their connections

The temporal trace language TTL used in our approach is much more
expressive than standard or extended modal temporal logics as described, for
example, in (Henzinger, Nicolli n, Sifakis and Yovine 1994; Bouajjani,
Lakhnech and Yovine 1996; Yovine 1997; Fisher 1994; Clarke, Grumberg
and Peled 2000; Manna and Pnueli 1995; Stirling 2001), in a number of
respects. In the first place, it has order-sorted predicate logic expressivity,
whereas most standard temporal logics are propositional. Secondly, the
explicit reference to time points and time durations offers the possibili ty of
modelli ng the dynamics of real-time phenomena. These first two points
apply only partially to logics where it is possible to have real numbers for
time and arithmetical operations and order relations to express constraints
between time points, as in (Henzinger, Nicolli n, Sifakis and Yovine 1994;
Bouajjani, Lakhnech and Yovine 1996; Yovine 1997).
 Third, the possibili ty to quantify over traces allows for specification of
more complex dynamics. As within most temporal logics, reactiveness and

 REQUIREMENTS AND PROPERTIES OF A DESIGN 23

pro-activeness properties can be specified. In addition, in our language also
properties expressing different types of adaptive behaviour can be expressed.
For example an adaptive property such as ‘exercise improves skill ’ , or ‘ the
better the experiences, the higher the trust’ (trust monotonicity) which both
are a relative property in the sense that it involves the comparison of two
alternatives for the history. This type of property can be expressed in our
language, whereas in standard forms of temporal logic different alternative
histories cannot be compared. The same difference applies to situation
calculus, event calculus, fluent calculus, and the languages in (Henzinger,
Nicolli n, Sifakis and Yovine 1994; Bouajjani, Lakhnech and Yovine 1996;
Yovine 1997).
 Fourth, in TTL it is possible to define local languages for parts of a
system. For example, the distinctions between components, and between
input and output languages are crucial, and are supported by the language,
which also entails the possibili ty to quantify over system parts and changing
system parts over time; for example, this allows for specification of system
configuration modification over time; cf. (Dastani, Jonker and Treur 2002)
 The approach proposed suggests that (documentation) libraries of
reusable components should as much as possible include specifications of
dynamic properties in the simpler ‘ leads to’ f ormat. If these properties can be
taken from such a library, and requirements on the dynamics of the design as
a whole are formally specified as indicated, then the support as described can
work quite well . If , however, no specifications of the dynamic properties of
the reusable components are known, then as part of the design process these
properties and their specifications have to be identified first.

References

Al-Asaad, H. and Hayes, J. P. (1995). Design Verification via Simulation and Automatic Test
Pattern Generation, International Conference on Computer-Aided Design, 1995, pp. 174-
180.

Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M. Reynolds (1996). The Imperative
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd. and John
Wiley & Sons.

Bouajjani, A., Lakhnech, Y., and Yovine, S. (1996). Model checking for extended timed
temporal logic. In Proc. of the 4th International Symposium Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT'96, Uppsala, Sweden, September 1996.
Lecture Notes in Computer Science, vol. 1135, Springer-Verlag.

Brazier, F.M.T., Jonker, C.M., and Treur, J. (1998). Principles of Compositional Multi -agent
System Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP World Computer
Congress, WCC' 98, Conference on Information Technology and Knowledge Systems,
IT&KNOWS' 98, 1998, pp. 347-360. To be publi shed by IOS Press, 2002.

Clarke, E.M., Grumberg, O., and Peled, D.A. (2000). Model Checking. MIT Press.
Dastani, M., Jonker, C.M., and Treur, J. (2002). A Requirement Specification Language for

Configuration Dynamics of Multi -Agent Systems. In: Wooldridge, M., Weiss, G., and
Ciancarini, P. (eds.), Proc. of the 2nd International Workshop on Agent-Oriented

24 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS

Software Engineering, AOSE'01. Lecture Notes in Computer Science, vol. 2222. Springer
Verlag. To appear, 2002.

Fisher, M. (1994). A survey of Concurrent METATEM — the language and its appli cations. In:
D.M. Gabbay, H.J. Ohlbach (eds.), Temporal Logic — Proceedings of the First
International Conference, Lecture Notes in AI, vol. 827, pp. 480–505.

Henzinger, T., Nicolli n, X., Sifakis, J., Yovine, S. (1994). Symboli c model checking for real-
time systems. Information and Computation, 111(2):193--244, June 1994. Academic Press

Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E. (1999). Specification of
Behavioural Requirements within Compositional Multi -Agent System Design. In: F.J.
Garijo, M. Boman (eds.), Multi -Agent System Engineering, Proc. of the 9th European
Workshop on Modelli ng Autonomous Agents in a Multi -Agent World, MAAMAW'99.
Lecture Notes in AI, vol. 1647, Springer Verlag, 1999, pp. 8-27.

Hölldobler, S., and Thielscher, M. (1990). A new deductive approach to planning. New
Generation Computing, 8:225-244, 1990.

Jonker, C.M., and Treur, J. (1998). Compositional Verification of Multi -Agent Systems: a
Formal Analysis of Pro-activeness and Reactiveness. In: W.P. de Roever, H. Langmaack,
A. Pnueli (eds.), Proceedings of the International Workshop on Compositionalit y,
COMPOS'97. Lecture Notes in Computer Science, vol. 1536, Springer Verlag, 1998, pp.
350-380. Extended version in: International Journal of Cooperative Information Systems.
In press, 2002.

Kowalski, R., and Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4:67-95, 1986.

Manna, Z., and Pnueli , A. (1995). Temporal Verifi cation of Reactive Systems: Safety. Springer
Verlag.

McCarthy, J. and P. Hayes, P. (1969). Some philosophical problems from the standpoint of
artificial intelli gence. Machine Intelli gence, 4:463--502, 1969.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, 2001.

Roever, W.P. de, H. Langmaack, A. Pnueli (eds.), Proceedings of the International Workshop
on Compositionalit y, COMPOS'97. Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998.

Stirli ng , C. (2001). Modal and Temporal Properties of Processes. Springer Verlag.
Yovine, S. (1997). Kronos: A verification tool for real-time systems. International Journal of

Software Tools for Technology Transfer, vol. 1, pp. 123-133.

