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Abstract. Within a design process, the evaluation of a candidate 
design solution against a set of requirements may be hard, especiall y 
when the requirements concern dynamic properties. For a component-
based design, evaluation of the dynamics can be based on dynamic 
properties of the components, and the way in which they are 
connected. In this paper an automated approach to the evaluation of 
dynamic properties of a component-based design is presented. A 
declarative temporal modelli ng language to specify and analyse 
dynamic properties is offered. An executable subset of this language is 
defined, based on ‘ leads to’ relations. If executable specifications in 
terms of leads to relations of dynamic properties of the (reusable) 
components within a component-based design are available, then 
automated support is offered for: (1) simulation of the overall 
dynamics based on the executable dynamic properties of the 
components, (2) evaluation of requirements in the form of required 
overall dynamic properties of a design against a number of execution 
traces of the design, and (3) proving properties of an overall 
component-based design from executable properties of its 
components. The paper presents methods, techniques and software for 
such support and ill ustrates these by an example from the application 
area of component-based software design.  

1.  Introduction 

In some application areas of design, systems which have nontrivial dynamics 
are designed in a component-based manner. An example of such an 
application area is the design of component-based software for dynamic 
applications. In such application areas often components can be (re)used for 
which the dynamic properties are known. By composing a number of such 
components in a component-based design, the required overall dynamics is 
obtained. If the dynamics required is not that simple, it is not straightforward 
how such dynamics relates to available reusable components and their 
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dynamic properties. Therefore automated support for such design processes 
is desirable. Literature addressing automated support in the areas of model 
checking and verification in general can be found, for example, in 
(Henzinger, Nicollin, Sifakis and Yovine 1994; Bouajjani, Lakhnech, 
Yovine 1996; Yovine 1997; Fisher 1994; Clarke, Grumberg and Peled 2000; 
Manna and Pnueli 1995; Stirling 2001).  
 To support component-based design of dynamical systems, combining 
required nontrivial dynamics with the use of reusable components, a number 
of questions need to be addressed: 

• How can dynamic properties of (reusable) components be specified? 
• How can requirements on the dynamics of an overall design be 

specified? 
• How can it be checked whether a given component-based design, 

with known dynamic properties of its components, fulfils a given 
requirement on its overall dynamics? 

• To fulfill overall requirements on dynamics, how can proper 
reusable components be determined on the basis of their dynamic 
properties, and how can they be composed to obtain a component-
based design fulfilling these overal requirements? 

In this paper a rich temporal framework is used to address these questions 
(with an emphasis on the first three). The temporal framework provides a 
declarative (requirement) specification environment and is used for a variety 
of activities, such as temporal simulation, temporal model checking and 
temporal reasoning about dynamic properties. The application area used to 
illustrate the approach is the design of software, in particular a system of 
information agents. 
 Specification of dynamic properties of a component-based design has at 
least two different aspects of use. First, models for the dynamics can be 
specified to be used as a basis for simulation, also called executable models. 
These types of models can be used to perform (pseudo-)experiments on the 
basis of the design. Second, specification of dynamic properties of a system 
can be done in order to analyse its dynamics (i.e., to obtain automated 
support for requirements specification, verification and testing). These 
properties can play the role of requirements, and can be used, for example, in 
evaluation of sample behaviours of (realised or simulated) designs in the 
context of these requirements. These two different uses of specification of 
dynamic properties of a component-based design impose different desiderata 
on the languages in which these specifications are to be expressed.  
 A language for executable models should be formal, and as simple as 
possible, to avoid computational complexity. Expressivity can be limited. 
Software tools to support such a language serve as simulation environment. 
A language to analyse dynamic properties, on the other hand, should be 
sufficiently advanced to express various dynamic properties that are 
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relevant. Expressivity should not be too limited; executabili ty, however, is 
not required for such a language. What is important, though, is that 
properties specified in such a language can be checked for a given sample 
behaviour (e.g., a simulation run) without much work, preferably in an 
automated manner. Moreover, it is useful if a language to specify dynamic 
properties provides possibili ties for further analysis of logical relationships 
between properties. For these reasons also a language to specify properties 
of the dynamics of a design should be formal, and at least partly supported 
by software tools (analysis environment). 
 In this paper two different temporal specification languages for dynamic 
properties are put forward and ill ustrated for an example application. In 
Sections 2 and 3 it is shown how the two languages (one aiming at analysis, 
the other one aiming at simulation) to model dynamics within a component-
based design can be defined. An example component-based software design 
is used to ill ustrate the notions that are introduced. In Section 4 a model for 
the dynamics of this example design is presented. Section 5 addresses the 
use of the analysis environment for the example design. In Section 6 the use 
of the simulation environment is addressed. In Section 7 a discussion is 
included. 

2.  Specification of Dynamic Properties of a Component-Based Design 
To specify dynamic properties of a design, the temporal trace language used 
in (Jonker and Treur 1998; Herlea, Jonker, Treur and Wijngaards 1999) is 
adopted. This is a language in the family of languages to which also situation 
calculus (McCarthy and Hayes 1969; Reiter, 2001), event calculus 
(Kowalski and Sergot 1986), and fluent calculus (Hölldobler and Thielscher 
1990) belong. In Section 2.1 the Temporal Trace Language TTL is 
introduced. This language is more expressive than modal and temporal 
languages as described, for example, in (Henzinger, Nicolli n, Sifakis and 
Yovine 1994; Bouajjani, Lakhnech and Yovine 1996; Yovine 1997; Fisher 
1994; Clarke, Grumberg and Peled 2000; Manna and Pnueli 1995; Stirling 
2001); see Section 6 for more discussion about expressivity. In Section 2.2 
an example component-based software design (of a multi-agent system of 
information agents) is introduced to ill ustrate the language and its use. 

2.1.  THE TEMPORAL TRACE LANGUAGE TTL 

An ontology is a specification (in order-sorted logic) of a vocabulary (also 
called a signature). A state for ontology Ont is an assignment of truth-values 
{ true, false}  to the set of ground atoms At(Ont). The set of all possible states for 
ontology Ont is denoted by STATES(Ont). The standard satisfaction relation |= 
between states and state properties is used: S |= p means that state property p 
holds in state S.  
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 To describe behaviour, explicit reference is made to time in a formal 
manner. A fixed time frame T is assumed which is linearly ordered. 
Depending on the application, it may be dense (e.g., the real numbers), or 
discrete (e.g., the set of integers or natural numbers or a finite initial segment 
of the natural numbers), or any other form, as long as it has a linear ordering.  
A  trace  

�
 over an ontology  Ont  and time frame T  is a mapping � : T → 

STATES(Ont), i.e., a sequence of states �  t (t ∈ T) in  STATES(Ont). The set of all 
traces over ontology Ont is denoted by TRACES(Ont), i.e., TRACES(Ont) = 

STATES(Ont)T. 
 States of a trace can be related to state properties via the formally defined 
satisfaction relation |= between states and formulae. Comparable to the 
approach in situation calculus, the sorted predicate logic Temporal Trace 
Language TTL  is built on atoms referring to traces, time and state properties, 
such as  
 

state( � , t, output(C)) |= p.  
 

 
This expression denotes that state property p is true at the output of 
component C in the state of trace �   at time point t. Here |= is a predicate 
symbol in the language (in infix notation), comparable to the Holds-predicate 
in situation calculus. Temporal formulae are built using the usual logical 
connectives and quantification (for example, over traces, time and state 
properties). The set TFOR(Ont) is the set of all temporal formulae that only 
make use of ontology Ont. We allow additional language elements as 
abbreviations of formulae of the temporal trace language. Ontologies can be 
specific for a component.  

2.2  AN EXAMPLE COMPONENT-BASED SOFTWARE DESIGN 

For the example, consider a component-based design for a system of two 
software agents A and B (represented in the design by two components; see 
Figure 1) that participate in a small project: they each have to acquire some 
information (in the External World, represented by a third component in the 
design) and in cooperation they make up a concluding report on some topic. 
Each of the agents has access to useful sources of information, but this 
differs for the two agents. By co-operation they can benefit from the 
exchange of information that is only accessible to the other agent. If both 
types of information are combined, the relevant conclusions can be drawn 
that would not have been achievable for each of the agents separately. A 
relevant property of such a component-based design is successfulness: 

• What makes the difference for such a co-operation to succeed or to 
fail?  
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• Which dynamic properties of the components are relevant for being 
successful?  

• How does successfulness relate to these dynamic properties?  

For example, one of the agents, say A, may not be pro-active in its individual 
search for information. This might be compensated if the agent B is pro-
active in requesting the other agent for information, but then at least A has to 
be reactive (and not entirely inactive) in information acquisition. Also other 
reasons for failure may exist. For example, one of the agents may not be 
willing to share its acquired information with the other agent. Yet another 
reason for failure may be that although both agents are active in searching 
and exchanging information, none of them is combining different types of 
information and deduce new conclusions. So, dynamic properties of the 
design as a whole depend in a crucial manner on the dynamic properties of 
the components, in this case the proper pro-activeness and reactiveness 
properties that play a role in the dynamics of the cooperation process  of the 
agents. 

 

 
  

system  task  control

External 
World

Agent B

Agent A

 

Figure 1.  The Example Component-Based Design 
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 Summarizing, this example component-based design as depicted in 
Figure 1 is composed of three components: two information agents A and B 
and a component EW representing the External World. In this figure the 
boxes denote system components. During processing of the system, each 
component has at each point in time an input state and an output state. The 
arrows depict output-input connections: channels taking care that 
information available at an output state is also made available (possibly with 
some small delay) for the connected input state. Each of the agents is able to 
acquire partial information in the External World by initiated information 
acquisition, this is modelled by an arrow from the agent to the External 
World transferring information on what is to be acquired, and by an arrow 
back transferring information on the results of the acquisition. 
 Each agent’s own observations are insuff icient to draw conclusions of a 
desired type, but the combined information of both agents is suff icient: they 
have to co-operate to be able to draw conclusions. Therefore communication 
is required; each agent can communicate results of its own information 
acquisition and requests for information to the other agent: the arrows 
between the agents. 
 
Assumptions on the notion of component-based design 
The above description gives an indication of the – very general –   
assumptions that are made on the notion of component-based design. This is 
a design structure based on components with at each point in time input 
states and output states that are connected by arrows to form the design. An 
arrow modifies the destination state at each point in time that the source state 
has changed, by inserting the changed source state in it. 
 For reasons of presentation, this by itself quite common situation for co-
operative information agents is materialised in the following more concrete 
form. The world situation consists of an object that has to be classified. One 
agent can observe only the bottom view of the object, the other agent the 
side view. By exchanging and combining acquired information on the object 
they are able to classify the object. For example, if A observes a circle, and 
B observes a square, then, if A and B cooperate, together they can conclude 
that the object is a cylinder. 
 
Communication from the agent A to B takes place in the following manner: 
 

• the agent A generates at its output state a statement of the form: 

  communication_from_to(<type>, <atom>, <sign>, A, B) 

• this information is transferred to the input state of B using the arrow 
from A to B  
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In the example <type> can be fill ed with a label request or world_info, <atom> 
is an atom expressing information on the world, and <sign>,  is one of pos or  
neg, to indicate truth or falsity. Instances of communication information that 
can be expressed are: 
 

  communication_from_to(request, view(B,circle), pos,  A, B) 

  communication_from_to(world_info, view(B,circle), neg,  B, A) 

 
Here the object atom view(B,circle) expresses the world information that the 
view of the object visible for B is a circle. Interaction between an agent A 
and the External World takes place as follows: 

 
• the agent A generates at its output state a statement of the form: 

  to_be_acquired_by(<atom>, A) 

• the information is transferred to the input state of EW  

• the External World EW generates at its output state a statement of 
the form: 

  acquired_information_for(<atom>, <sign>, A) 

• the information is transferred to A  
 
Instances of information on information acquisition for an agent A that can 
be expressed are: 
 

  to_be_acquired_by(view(A,circle), A) 

  acquired_information_for(view(A,circle), pos, A) 

 
The output of an agent can include conclusions about the classification of the 
object of the form conclusion(object_type(O)); these are transferred to the output 
of the system as a whole.  
 In Table 1 an informal sketch of an example trace showing the dynamics 
of the component-based design is depicted. Here for simplicity the transfer 
of information between components is assumed to take no time (in contrast, 
in the simulation presented in Section 6, the transfer does take time). In this 
example trace, at time point 1 agent A takes two initiatives (see A’s output 
state): (1) to acquire information and (2) to request information from B. 
These initiatives are immediately (same time point) received at the input of 
the External World component and at the input of B. As a result the External 
World provides the information (output at time point 2), and agent B starts 
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an information acquisition process (output at time point 2). Immediately (at 
time point 2) the acquired information is received by A’s input, and the 
information acquisition initiation of B is received at the External World 
component’s input. As a result, the External World provides the information 
for B (time point 3), and this immediately is transferred to B’s input. As a 
result, B communicates this information to A (time point 4). Finally, A, 
combining the gathered information, draws the conclusion. 
 

TABLE 1. An example trace of a cooperative information gathering process 

Time 
point 

1 2 3 4 5 

Agent A 
input 

 information 
acquired  
by A 

 information 
acquired by B 
for A 

 

output acquisition 
initiation  by A; 
request of A to 
B 

   conclusion 
combining 
the two types 
of 
information 

Agent B 
input 

request of A to 
B 

 information 
acquired  
by B 

  

output  acquisition 
initiation by B 

 information 
acquired by B 
for A 

 

External 
World 
input 

acquisition 
initiation by A 

acquisition 
initiation by B 

   

output  information 
acquired  
by A 

information 
acquired  
by B 

  

 
 
 The example trace discussed above shows a successful cooperation. In 
virtue of which dynamic properties of the components was this success 
possible? This question will be addressed in Section 3. In the remainder of 
this section, to ill ustrate the use of the temporal trace language, some 
dynamic properties for this component-based design as a whole are shown. 
Expressed both informally and formally, two of these example properties 
state the following: 
 

• Successfulness 
For any trace of the system, there exists a point in time such that in 
this trace at that point in time the system will provide a conclusion. 
Using the Temporal Trace Language TTL, this is formally expressed 
by: 
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∀ �   : TRACES ∃ t  ∃ O : OBJECT 

state( � , t, output(S)) |== conclusion(object_type(O)) 
 

• Cooperation necessity 
For any trace of the system and any point in time, if in this trace 
agent A provides the relevant conclusion, then at an earlier point in 
time agent B has communicated to agent A information acquired by 
B. 
This is formally expressed by: 
∀ �   : TRACES  ∀ O1 : OBJECT ∀ t   

  state( � , t, output(A)) |== conclusion(A, object_type(O1)) ⇒ 
   ∃t’ < t  ∃ O2 : OUTLINE   
     state(� , t, output(B)) |== communication_from_to(world_info, view(B, O2), pos, B, A) 

 
Other properties considered for this example are correctness and 
conservatism; see Section 5 for more details of these properties. 

3.  An Executable Language to Specify Dynamic Properties for 
Simulation 

To obtain an executable language, in comparison with the temporal trace 
language discussed above strong constraints are imposed on what can be 
expressed. These constraints define a temporal language within the paradigm 
of executable temporal logic; cf. (Barringer et al. 1996). Roughly spoken, in 
this executable language it can only be expressed that if a certain state 
property holds for a certain time interval, then this leads to the situation that 
after some delay another state property should hold for a certain time 
interval. The use of real-valued parameters for time durations and delays is 
an extension, compared to the languages described in (Barringer et al. 1996). 
This specific temporal relationship •→→ (leads to) is definable within the 
temporal trace language TTL. This definition is expressed in two parts, the 
forward in time part and the backward in time part. Time intervals are 
denoted by [x, y) (from and including x, to but not including y) and [x, y] 
(the same, but includes the y value). 
 
Definition (The leads to relationship ••→→→→) 
Let α and β be state properties, and let P1 and P2 refer to parts of the design 
(e.g., input or output of particular components). Then β  follows α, denoted 
by  P1:α →→e, f, g, h P2:β, with time delay interval [e, f] and duration parameters  
g and h if (see also Figure 2): 

∀�  : TRACES ∀t1:  

 [∀t ∈ [t1 - g, t1) : state(� , t, P1) |== α   ⇒   

 ∃λ ∈ [e, f] ∀t ∈ [t1 + λ, t1 + λ + h)  : state(� , t, P2) |== β ] 
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Conversely, the state property β originates from state property α, denoted by 
P1:α  •e, f, g, h

 P2:β, with time delay in [e, f] and duration parameters  g and h if  

∀ � : TRACES ∀ t2:  

 [∀t ∈ [t2, t2 + h)  : state(� , t, P2) |== β ⇒   

 ∃λ ∈ [e, f] ∀t ∈ [t2 - λ - g, t2 - λ)  state(� , t, P1) |==  α] 
If both  P1:α →→e,f,g,h

 P2:β,  and  P1:α •e,f,g,h
 P2:β hold, this is called a leads to 

relation and denoted by  P1:α •→→e,f,g,h
 P2:β. Sometimes also conjunctions or 

negations on one of the sides (or both) of the arrow are used. 
 

 

α
β

t1

e

g h

t2

time

f
t0  

Figure 2. The Time Relationships between the Parameters 

 
Notice that a special case is when the state property α is taken the trivial 
property true that is always (at every time point in every trace) true. In this 
case a leads to relation specifies that the property β  will be initiated or 
realized. Examples of leads to relations in the context of the example 
component-based design as described in Section 2.2 are the following. Here 
the dynamic properties are formulated for a given agent A with respect to the 
other agent B; similar properties will hold for agent A’s cooperation partner 
B. 
 
Information acquisition reactive 

A request to an agent A by another agent B for information that can be 
acquired by A leads to acquisition of this information by agent A. 
Formally expressed: 

∀ O : OUTLINE  

input(A):communication_from_to(request, view(A, O), pos, B, A)  •→→
5,5,10,10

  
output(A):to_be_acquired(view(A, O), A) 

 
Request pro-active 
Agent A initiates communication to agent B of a request for information that 
B is able to acquire. 
Formally expressed: 

∀ O : OUTLINE  

true •→→
5,5,10,10

  output(A) :communication_from_to(request, view(B, O), pos, A, B) 

 
More examples can be found in Section 4. 
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notion α  
notion β  

actual delay

duration g

duration h

minimum delay
maximum delay

additional duration

additional duration

 
Figure 3.  Temporal relationships for longer durations  

The definition of the relationships as given above can be applied to 
situations where the sources hold for longer than the minimum interval 
length g. The result for a longer duration of α for P1:α •→→ P2:β is depicted 
in Figure 3. The additional duration that the source holds, is also added to 
the duration that the result will hold, provided that the condition e + h ≥ f 
holds. This is because the definition can be applied at each subinterval of α, 
resulting in many overlapping intervals of β. The end result is that the 
additional duration also extends the duration that the resulting notion β 
holds. 

4.  An Executable Model for the Example Component-Based Design 

To obtain an executable model for the dynamics of a component-based 
design, two types of dynamic properties in leads to format are used: 
properties for the dynamics of each of the components (Section 4.1), and 
properties that define the dynamics of the connections between components 
(Section 4.2). 

4.1.  DYNAMIC PROPERTIES OF THE COMPONENTS 

For the example design, the components have dynamic properties as listed 
below. This does not mean that every possible component has all these 
properties. Rather, each specific candidate for a component is characterised 
by a subset of these properties. First the possible properties for the agents are 
discussed. They are expressed for agent A (with respect to the other agent B 
and the External World). 

Information acquisition reactive 
A request to an agent A by another agent B for information that can be 
acquired by A leads to acquisition of this information by agent A. 
Formally expressed as: 

∀ O : OUTLINE 

input(A) : communication_from_to(request, view(A, O), pos, B, A)  •→→5,5,10,10
   

output(A) : to_be_acquired(view(A, O), A) 
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Information acquisition pro-active 
Agent A initiates the acquisition of information it is able to acquire 
Formally expressed as: 

∀ O : OUTLINE 

true •→→
5,5,10,10

  output(A) : to_be_acquired(view(A, O), A) 

Request pro-active 
Agent A initiates communication to agent B of a request for information that 
B is able to acquire. 
Formally expressed as: 

∀ O : OUTLINE 

true •→→
5,5,10,10

  output(A) : communication_from_to(request, view(B, O), pos, A, B) 

Information provision reactive 
A request to an agent A by another agent B for information that can be 
acquired by A, together with receiving this acquired information by agent A 
leads to communication of this information to agent B. 
Formally expressed as: 

∀ O : OUTLINE  

input(A):communication_from_to(request, view(A, O), pos, B, A) ∧  

input(A) : acquired_information_for(view(A, O), pos, A)  •→→
5,5,10,10

   

output(A) : communication_from_to(world_info, view(A, O), pos, A, B) 

Information provision proactive 
Receiving acquired information by agent A leads to communication of this 
information to agent B. 
Formally expressed: 

∀ O : OUTLINE  
input(A) : acquired_information_for(view(A, O), pos, A)  •→→

5,5,10,10
   

output(A) : communication_from_to(world_info, view(A, O), pos, A, B) 

Conclusion proactive 
Receiving acquired information by agent A and receiving by communication 
information acquired by agent B leads to combining this information in 
drawing a conclusion. Which specific conclusion is to be drawn depends on 
the input information. Therefore, this property consists of a set of specific 
properties (instances), for example in formal form: 
 
            input(A) : acquired_information_for(view(A, square), pos, A) ∧  

            input(A) : communication_from_to(world_info, view(B, square), pos, B, A)  •→→
5,5,10,10

   

            output(A) : conclusion(object_type(cube)) 
 
The last property is a property of the External World component. 
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Information acquisition effectiveness 
This is a property of the External World component that guarantees that 
every information acquisition initiative results in the acquired information 
Formally expressed: 

∀ X : AGENT ∀ O : OUTLINE ∀ S : SIGN 
input(EW) : to_be_acquired(view(X, O), X) ∧ 

output(EW) : true_in_world(view(X, O), S)  •→→
5,5,10,10

  

output(EW) : acquired_information_for(view(X, O), S, X) 

4.2.  DYNAMIC PROPERTIES FOR CONNECTIONS BETWEEN 
COMPONENTS 

In addition to dynamic properties of components, connection properties are 
used to express the dynamics of the connections between the components in 
the design. These have a common pattern, instantiated for the particular 
components and the state properties involved at the connected output and 
input states. A possibility is to take zero time delay for connections. 
However, to be more general, nonzero delays in connections are allowed as 
well. 

Connection of one agent to the other 
∀ A : AGENT ∀ B : AGENT ∀ C : COMMUNICATION_TYPE ∀ I : INFO 
[A ≠ B] ⇒  

output(A) : communication_from_to(C, I, S, A, B)  •→→
5,5,10,10

   

input(B) : communication_from_to(C, I, S, A, B) 

Connection of an agent to the External World 
∀ A : AGENT ∀ I : INFO 

output(A) : to_be_acquired_by(I, A)  •→→
5,5,10,10

   

input(EW) : to_be_acquired_by(I, A) 

Connection of the External World to an agent 
∀ A : AGENT ∀ I : INFO ∀ S : SIGN 

output(EW) : acquired_information_for(I, S, A)  •→→
5,5,10,10

  

input(A) : acquired_information_for(I, S, A) 

Connection of an agent to the system output state 
∀ A : AGENT ∀ O : OBJECT 

output(A) : conclusion(object_type(O))  •→→
5,5,10,10

   

output(S) : conclusion(object_type(O)) 

5.  Analysis Environment 
Apart from an editor to specify dynamic properties, the analysis environment 
includes two parts; all these tools assume a finite time frame: 
1. a tool that, given a set of traces (e.g., generated by simulation based on 

the component properties or testing of a prototype realisation), checks 
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any dynamic property of a component-based design expressed in the 
Temporal Trace Language TTL. In additiona tool has been developed 
that, given a trace checks for any property expressed in terms of •→→ 
where exactly in the trace this property fails. 

2. a tool that, given an executable specification, for any dynamic property 
in leads to format proves or disproves whether it is entailed by the 
dynamic properties in leads to format of the components. 

5.1. CHECKING A DYNAMIC PROPERTY AGAINST A SET OF TRACES 

This application assumes that at a certain point in time within a design 
process both a set of requirements for dynamic properties of a design as a 
whole, and a generated candidate for the design are available. To check 
whether a required dynamic property for the design (expressed by a temporal 
formula in TTL with a universally quantified variable �  for a trace) is fulfilled 
in a given trace or set of traces, a software environment based on some 
Prolog and C programmes (of about 4000 lines) has been developed. Within 
this program temporal formulae from TTL are represented by nested term 
structures based on the logical connectives. Specification of properties is 
supported by an editor in which properties in terms of TTL can be expressed 
more or less as written below. 

GR1  Successfulness 
For any trace of the system, there exists a point in time such that in this trace 
at that point in time the system will provide the relevant conclusion. 
Using the Temporal Trace Language TTL, this is formally expressed by: 
∀ �   : TRACES ∃ O : OBJECT ∃ t   

state( � , t, output(S)) |== conclusion(object_type(O)) 

This can also be expressed in simple format as follows: 
∃ O : OBJECT   true →→

0,1000,10,10
 output(S) : conclusion(object_type(O)) 

GR2  Correctness 
For any trace of the system and any point in time, if in this trace the system 
provides information at t, then this information is correct. 
Formally expressed in TTL format by: 
∀ �   : TRACES  ∀ O : OBJECT ∀ t   

 state(� , t, output(S)) |== conclusion(object_type(O)) ⇒ 

  state( � , t, output(EW)) |== true_in_world(object_type(O), pos) 

This can also be expressed in simple format as follows: 

∀ O : OBJECT  

output(W) : true_in_world(object_type(0), pos) •
0,1000,10,10

  

output(S) : conclusion(object_type(O)) 
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GR3  Conservatism 
For any trace of the system and any point in time, if in this trace the system 
provides a conclusion at t, then for all points in time t’ later than t in this 
trace at t’ the system provides the same conclusion. 
Formally expressed in TTL format by: 
∀ �   : TRACES  ∀ O : OBJECT ∀ t   

 state(� , t, output(S)) |== conclusion(object_type(O)) ⇒ 

  ∀t’ > t   state(� , t’, output(S)) |== conclusion(object_type(O)) 

This can also be expressed in simple format as follows: 

∀ O : OBJECT  

       output(S) : conclusion(object_type(O)) →→
1,1,1,1

 output(S) : conclusion(object_type(O)) 

GR4  Cooperation necessity 
For any trace of the system and any point in time, if in this trace agent A 
provides a conclusion, then at an earlier point in time agent B has 
communicated to agent A information acquired by B. 
Formally expressed in TTL format by: 
∀ �   : TRACES  ∀ O1 : OBJECT ∀ t   

 state(� , t, output(A)) |== conclusion(object_type(O1)) ⇒ 

      ∃t’ < t  ∃ O2 : OUTLINE   
   state(� , t’, output(B)) |== communication_from_to(world_info, view(B, O2), pos, B, A) 

This can also be expressed in simple format as follows: 

∀O1:OBJECT ∀O2:OUTLINE ∀A:AGENT ∀B:AGENT 
[A ≠ B] ⇒  

output(B) : communication_from_to(world_info, view(B, O2), pos, B, A) •
0,1000,10,10

 

output(A) : conclusion(object_type(O1)) 
 
As an example, the specified successfulness property is represented as a 
nested term structure internally within the software environment: 
 
forall(M, ex(T2, INF,         

 holds(state(M, T2, output(S)), communication_from_to(INF, S:SYSTEM, U:USER), true) ) )  

 
Traces are represented by sets of Prolog facts of the form 
 

holds(state(m1, t(2), input(component)), a)), true). 

 
where m1 is the trace name, t(2) time point 2, and a is a state formula in the 
ontology of the component' s input. It is indicated that state formula a is true 
in the component’s input state within the design at time point T2. The Prolog 
programme for temporal formula checking uses Prolog rules such as 
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sat(and(F,G)) :- sat(F), sat(G). 
sat(not(and(F,G))) :- sat(or(not(F), not(G))). 
sat(or(F,G)) :- sat(F). 
sat(or(F,G)) :- sat(G). 
sat(not(or(F,G))) :- sat(and(not(F), not(G))). 

 
that reduce the satisfaction of the temporal formula finally to the satisfaction 
of atomic state formulae at certain time points, which can be read from the 
trace representation. 
 Another part of the program takes a trace of a component-based design as 
input, and specifications of dynamic properties (assumed in executable 
format) and generates an interpretation of what happens in this trace: it 
provides a check where exactly these dynamic properties actually hold in 
that trace.  
 The program marks any deficiencies in the trace compared with what 
should be there due to the temporal relationships. If a relationship does not 
hold completely, this is marked by the program. The program produces 
yellow marks for unexpected events. At these moments, the event is not 
produced by any temporal relationship; the event cannot be explained. The 
red marks indicate that an event has not happened, that should have 
happened. In addition to checking whether the rules hold, the checker 
produces an informal reading of the trace. The reading is automatically 
generated, using a simple substitution, from the information in the given 
trace.   
 
 

 
Figure 4. A nonsuccessful trace 

This environment can be used to compare any trace (for example obtained 
by prototyping or simulation) to the possible dynamics of a component-
based design. For example, it can be found that a certain part within the 
realisation does not fulfill the relevant component’s specified dynamic 
properties. As an example, in Figure 4 a trace is considered where agent B is 
expected to have a certain combination of properties, under which the 
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information acquisition reactiveness property but actually does not have this 
property (nor the information acquisition pro-activeness property). No 
conclusion is reached by the system. What is the cause of this failure? By 
checking all expected properties of B (and of the other components) it turns 
out that indeed the information acquisition reactiveness property fails, 
whereas the other expected properties do not fail. This pinpoints the cause of 
the failure. The result of the check is (taken from the larger picture in the 
interface) as depicted in Figure 5. It shows in red which and when outputs 
were expected from agent B that actually lack in the trace. 
 
 

  
Figure 5. Pinpointing the cause of nonsuccessfulness 

For all traces, the successfulness property GR1, the correctness property 
GR2, the conservatism property GR3, and the cooperatioon necessity 
property GR4 as specified in simple form above can be checked 
automatically, and actually have been checked for a number of traces. 
 As mentioned, to use this software environment, both a specification of a 
relevant property for the overall design and a set of traces of the considered 
design are needed. The relevant dynamic property is assumed to result from 
a requirements analysis during the design process. The set of traces against 
which the requirement is checked, can be provided in two manners. The first 
manner to obtain this set of traces is by simulation of the candidate 
component-based design. Here it is assumed that the (reusable) components 
used in the component-based design all have associated dynamic properties 
that hold for them. Moreover, it is assumed that these dynamic properties of 
the components can be expressed in executable format, based on the relation  
•→→. If these assumptions are fulfilled, simulation can be performed based 
on the simulation software environment described in Section 6. The second 
manner to obtain a set of traces is by prototyping. This assumes that 
realisations of the components used are available, and that they can easily be 
configured to obtain a prototype realisation of the whole design. This 
prototype realisation is used to do some test sessions, resulting in a set of  
traces that can be checked automatically as described above. 

5.2.   PROVING A •→→ PROPERTY FROM AN EXECUTABLE 
SPECIFICATION 

Another software tool (about 300 lines of code in Prolog) addresses the 
proving of dynamic properties (expressed in terms of →→ , •or •→→) of a 
component-based design as a whole from an (executable) specification of the 
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dynamic properties of the components without involving specific traces. 
This dedicated prover exploits the executable nature of the specification and 
the ‘past/current implies future’ (cf. (Barringer et al. 1996)) nature of the 
property to keep complexity limited.  

Using this prover, dynamic properties of the component-based design can 
be checked that hold for all traces, without generating them all (or a sample 
set of them) by subsequent simulation or prototyping as is needed in the 
approach described in Section 5.1. The eff iciency of finding such a proof 
strongly depends on the complexity of the specifications of the dynamic 
properties for the different components. For example, given the executable 
specification of the software agents, the successfulness property GR1, the 
correctness property GR2, the conservatism property GR3, and the 
cooperatioon necessity property GR4 defined above can be (and actually 
have been) proven from suitable sets of properties of the components.  

Also properties can be disproven. For example, for specifications of sets 
of dynamic properties of the agent components that do not guarantee 
information exchange between the agents, the property that ‘succesfulness of 
information acquisition of the two agents implies successfulness’ can be 
(and actually has been) proven not to hold. The prover comes up with a trace 
that is a counter example against this property: Similarly, for agents that are 
not conclusion pro-active, the property that ‘ if each of the agents provides 
the other agent with the information it acquired implies successfulness’ has 
been disproven. 

The eff iciency of the prover is reasonable. The price that is paid to keep 
complexity limited is that only properties of the overall design can be proven 
that can be written in one of the formats →→ , •or •→→.  

6.  Simulation Environment 

Based on the declarative executable temporal language, a simulation 
environment has been created to enable the simulation of a component-based 
design based on specification (in executable format) of dynamic properties 
of its component, to be used for testing and evaluation purposes; similar to, 
e.g., (Al-Asaad and Hayes 1995). In this section, first an example of an 
executable model is discussed. Then the simulation software is introduced. 
Finally, some of the results of the experiments with the example executable 
model are discussed. Input for the simulation environment is a set of 
executable temporal formulae expressed in terms of the leads to relation •→→
(i.e., in the format defined in Section 3). A software environment has been 
developed which implements the temporal formalisation of the dynamics as 
specified by an executable model. First the approach is introduced, then the 
program will be briefly reviewed, after which some of the results are 
discussed. 



 REQUIREMENTS AND PROPERTIES OF A DESIGN 19 

 

 

6.1. THE SIMULATION SOFTWARE 

The simulation determines the consequences of the temporal relationships 
forwards in time. Remember that α leads to β, is denoted by  P1:α •→→e, f, g, h 
P2:β, where the time delay λ is taken from the interval [e, f]. The duration 
parameter g denotes the time span that α must minimally hold, and h denotes 
the duration parameter that β must minimally hold. In order to make 
simulation efficient, long intervals of results are derived when starting from 
long intervals. By applying additional conditions (i.e., e+h ≥ f), the derivation 
of longer intervals becomes possible, see Section 3, Figure 3. The logical 
relationships thus avoid unnecessary work for the simulation software.  

The delay value λ can either be chosen randomly within the interval [e, f] 
each time a relationship is used in simulation, or the λ can be a fixed value in 
this interval. Selecting either a random or fixed λ enables thorough 
investigation of the consequences of a particular model. 
 Following the paradigm of executable temporal logic, cf. (Barringer et al. 
1996), but extended to real-time intervals, a 8000 line simulation program 
was written in C++ to automatically generate the consequences of the leads 
to relationships within the executable specification of dynamic properties of 
the components within a component-based design. The program is a special 
purpose tool to derive the results forwards in time, as in executable temporal 
logic. After a short look at the method of forward derivation, the 
specification of the derivation rules is presented. 

In order to derive the consequences of the temporal relationships within a 
specific interval of time, a cycle is performed, starting at time 0. For the set 
of rules the earliest starting time of the antecedent for each rule, for which 
the consequent does not already hold, is computed. A rule with earliest start 
time of the antecedent is chosen. This rule is then fired at that time, adding 
the consequent to the trace. The cycle is restarted, only looking for 
antecedents at or after the fire time point, as effects are assumed to occur 
simultaneously or after their causes. This continues until no more rules can 
be fired, or the fire time is at or after the end time of the simulation interval. 

The program reads a specification of temporal rules from a plain text file. 
The maximum time for derivation is also specified in that file, the interval [0, 
MaxTime). In order to specify facts about the environment, (periodic) 
intervals can be given. The functions not(), and(,), and or(,) can be used to 
make more complex properties from atoms. The properties have and, or and 
not given in prefix ordering for the program (instead of infix), i.e., a function 
is given before its arguments, e.g., and(a, b) instead of (a and b). The +( and +) 
brackets perform concatenation of their contents, in order to construct 
identifiers from variables and strings. The •→→ relation is specified using 
LeadsTo, followed by the e, f, g and h values. Note that the program does not 
use the • (originates from) part of the relation as only forward derivation is 



20 C.M. JONKER, J. TREUR AND W.C.A. WIJNGAARDS 

performed. First the timing is given, then the variables are quantified. A 
restriction is often put on the variables. Then the antecedent and consequent 
are given. For clarity, tokens are displayed boldface, values and identifiers 
are not. For example, the information acquisition reactiveness property is 
expressed as follows; here the keywords of the language are in bold: 

 

RuleVarLeadsTo delay 5 5 10 10 
  Var ForAll A : AGENT 
      ForAll B : AGENT NotEqual B : A 
      ForAll O : OUTLINE 
  EndVar 
     +( A _input_ communication_from_to( request , view( A , O ) , pos , B , A ) +)   o->> 
     +( A _output_ to_be_acquired( view( A , O ) , A ) +) 
 
 
 

  

Figure 6. A is fully reactive and proactive;  
B is reactive, but proactive in making conclusions.  

6.2. SOME SIMULATION RESULTS  

Figure 6 shows some of the results of simulation (picture generated by the 
tools) with the example component-based design. Time is on the horizontal 
axis. The properties are listed on the vertical axis. The λ is fixed at 0.5. A 
dark box on top of the line indicates the property is true during that time 
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period, and a single line indicates that the property is false during that time 
period. The first line, for example, contains the property that A has as input 
that what he has acquired is a shape that is no circle. This property is false 
most of the time, but true from approximately time point 60 on. 
 Figure 6 shows that the first event is that agent A takes the initiative 
(around time point 15) to acquire information by itself, and to request B for 
information. This information is received by B and the External World 
component around time point 30. The External World provides the 
information (it is a square) around time point 45; this acquired information is 
received by A around time point 65. In the meantime, around time point 45 
B starts to acquire its own information, which reaches the External World 
around time point 60. Around time point 75 the External World provides this 
acquired information for B (it is a circle), which is received by B around 
time point 90. Agent B drwas the conclusion around time point 105, and also 
communicates its acquired information to A around this timepoint 105; A 
receives it around time point 120, and draws a conclusion around time point 
130. Figure 7 shows another simulation trace generated by the tools. 

 

  

Figure 7.  A is fully proactive and reactive, B is reactive only. 
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7.  Discussion 

In this paper the use of specified properties of the dynamics of a component-
based design in the context of evaluation of the design is addressed. A 
declarative temporal trace language TTL is offered to specify dynamic 
properties, and a declarative executable language is defined as a basis for 
simulation and more eff icient analysis. This executable language belongs to 
the paradigm of executable temporal languages, cf. (Barringer et al. 1996), 
but adds the use of real-time intervals. Models can be specified in a 
declarative manner based on a temporal ‘ leads to’ relation which is 
parameterized by four real valued parameters for time durations and delays. 
Within the simulation environment such models can be executed.  

To specify dynamic properties in a more expressive manner, the 
language TTL is used: a Temporal Trace Language that belongs to the family 
of languages to which also situation calculus (McCarthy and P. Hayes 1969; 
Reiter, 2001), event calculus (Kowalski and Sergot 1986), and fluent 
calculus (Hölldobler and Thielscher 1990) belong. The executable language 
for simulations is definable within this much more expressive language. 
Supporting tools have been implemented that consist of: 

• A software environment for simulation of a component-based design 
on the basis of a specification of dynamic properties of the 
components and their connections in executable ‘ leads to’ f ormat 

• A software environment for evaluation of dynamic properties 
against traces for a component-based design, both for properties in 
TTL format and in ‘ leads to’ f ormat 

• A software environment to automatically prove (or disprove) ‘leads 
to’ properties of the overall design from ‘ leads to’ properties of its 
components and their connections 

 
The temporal trace language TTL used in our approach is much more 
expressive than standard or extended modal temporal logics as described, for 
example, in (Henzinger, Nicolli n, Sifakis and Yovine 1994; Bouajjani, 
Lakhnech and Yovine 1996; Yovine 1997; Fisher 1994; Clarke, Grumberg 
and Peled 2000; Manna and Pnueli 1995; Stirling 2001), in a number of 
respects. In the first place, it has order-sorted predicate logic expressivity, 
whereas most standard temporal logics are propositional. Secondly, the 
explicit reference to time points and time durations offers the possibili ty of 
modelli ng the dynamics of real-time phenomena. These first two points 
apply only partially to logics where it is possible to have real numbers for 
time and arithmetical operations and order relations to express constraints 
between time points, as in (Henzinger, Nicolli n, Sifakis and Yovine 1994; 
Bouajjani, Lakhnech and Yovine 1996; Yovine 1997). 
 Third, the possibili ty to quantify over traces allows for specification of 
more complex dynamics. As within most temporal logics, reactiveness and 



 REQUIREMENTS AND PROPERTIES OF A DESIGN 23 

 

 

pro-activeness properties can be specified. In addition, in our language also 
properties expressing different types of adaptive behaviour can be expressed. 
For example an adaptive property such as ‘exercise improves skill ’ , or ‘ the 
better the experiences, the higher the trust’ (trust monotonicity) which both 
are a relative property in the sense that it involves the comparison of two 
alternatives for the history. This type of property can be expressed in our 
language, whereas in standard forms of temporal logic different alternative 
histories cannot be compared. The same difference applies to situation 
calculus, event calculus, fluent calculus, and the languages in (Henzinger, 
Nicolli n, Sifakis and Yovine 1994; Bouajjani, Lakhnech and Yovine 1996; 
Yovine 1997). 
 Fourth, in TTL it is possible to define local languages for parts of a 
system. For example, the distinctions between components, and between 
input and output languages are crucial, and are supported by the language, 
which also entails the possibili ty to quantify over system parts and changing 
system parts over time; for example, this allows for specification of system 
configuration modification over time; cf.  (Dastani, Jonker and Treur 2002)  
 The approach proposed suggests that (documentation) libraries of 
reusable components should as much as possible include specifications of 
dynamic properties in the simpler ‘ leads to’ f ormat. If these properties can be 
taken from such a library, and requirements on the dynamics of the design as 
a whole are formally specified as indicated, then the support as described can 
work quite well . If , however, no specifications of the dynamic properties of 
the reusable components are known, then as part of the design process these 
properties and their specifications have to be identified first. 
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